July 4, 2020

Demand Forecasting and Budget Optimization using Python

publicis sapient

Rising AI 2020

About Publicis Sapient

We are a modern, digital transformation partner helping established organizations become digitally enabled to better serve their customers and thrive in the future.

> publicis sapient

Our Data Creds - Creating Value at Scale Globally

Years of Successful Track Record

1500+

Consultants with data aligned experience & skills

250+

Engagements Delivered 100+ Active Clients

Team Certified Across Key Partners such as Adobe, Google etc.

Expertise across multiple industry verticals

One Global Team Approach FIRST Global Specialized Partner for Adobe Analytics

GA 360 Partner

Analytics India Magazine: 10 Best Data Science Firms to work for 2019

We work with organizations to bring Data to life **now** while establishing a path to **next**

https://bit.ly/rising2020ps

publicis sapient

Celebrating women in Data

Demand Forecasting and Budget Optimization Using Python

4th July | Online Workshop | 11:20 am - 1:20 pm

Priyamvada Joshi Manager, Marketing Strategy and Analysis

Shilpa Shivapuram Senior Manager, Data Engineering

n Sharmistha Chatterjee Senior Manager, Data Science

Let's Get Started

- Demand Forecasting
 - Introduction
 - Techniques and Comparison
 - Use Case
 - Demo
- Budget Optimization
 - Introduction
 - Impact on forecasting
 - Use Case

https://datacoe-publicissapient.github.io/risingai2020

Key Takeaways

- Spectrum of Forecasting techniques
- Architect Forecasting methods for Scale
- Understanding Business problem (Automotive Industry)
- Hands on implementation of ARIMAX and Causal impact.
- Leveraging Forecasting output for Budget Optimization

What is one word that you can associate with demand forecasting?

Go to <u>www.menti.com</u> and use the code 493694 https://www.menti.com/prz9womap6

Demand Forecasting

Why demand forecasting ?

What businesses look for ?

- Can I optimize my inventory to minimize costs as well as manage demand.
- Can I create custom campaigns and increase my customer base using past behavior
- How can I optimize my costs on marketing spend

Techniques and Comparison

In this section, we like to present the various techniques used for forecasting as well as the uniqueness of each of them

Conventional demand forecasting techniques

Survey methods

- Simple & Direct Method
- Good for short term
- Decisions dependent on volume of survey
- People oriented

Statistical methods

- Complex
- Good for long term forecasting
- Require good volume of historical data

Expert Opinion

Delphi Method

Prediction Market

Market Experiment Method

Survey Methods

In this section, we like to present the various techniques used for forecasting as well as the uniqueness of each of them

In this method, consumers or experts are directly contacted and asked for feedback of product and future purchase plans

Statistical Methods

In this section, we like to present the various techniques used for forecasting as well as the uniqueness of each of them

Another perspective of looking at forecasting can be also

Time series forecasting

- moving average method
- exponential smoothing method
- trend projection methods

Causal methods

- chain-ratio method
- consumption level method
- end use method
- leading indicator method

Trend Projection

Economical Methods

Segmentation

Discrete Event Simulation

Statistical Methods

In this section, we like to present the various techniques used for forecasting as well as the uniqueness of each of them

23

How do I pick the right technique ?

\sim°	Subjective	Objective
Time Series Causal / Relationship	 Judgmental "Some expert knows the answer" Salesforce Surveys Jury of Experts Delphi Sessions 	 Causal / Relationship "There is an underlying relationship" Econometric Models Leading Indicators Input-Output Models
Experimental	 Experimental "Sampling local, then extrapolating" Customer Surveys Focus Groups Test Marketing 	 Time Series "Look for patterns in historical data" Black Box Approach Moving Averages Exponential Smoothing

• Which techniques have you applied ?

Go to <u>www.menti.com</u> and use the code 493694 https://www.menti.com/prz9womap6

Traditional Time series Vs Deep learning

Traditional Time Series

- Mostly Univariate
- Seasonality
- Not suitable for long term
- Require complete data
- Easy to interpret

Deep Learning

- Multivariate
- Suitable for high volume of data
- Blackbox with complex relations
- Lack of interpretability
- Requires high computational

resources

System design for Conventional Time Series Seasonal Prediction

Additional Factors for consideration

Now that we understand the techniques of forecasting and the client impact, let's think about some of the other factors that needs to be considered while designing such system

ARIMAX model extends the univariate ARIMA model through inclusion of exogenous variables X, whose effect on forecasted values is calculated through regression.

Selection of best model -ARIMA

Selection of best model -Auto ARIMA

31

Auto and Partial Autocorrelation

HOW ? we did it in action

Use Case - Automotive Client

Let's look at how we applied these techniques to solve the business problem for one of our automotive client.

- The objective was to understand and predictions of demand drivers(Visits, Lower Funnel Activities(LFAs) and Leads) by brand and model by keeping media spends in consideration.
- Client wanted to see the impact of advertisements they run on TV and Radio at prime time on there website performance and which can help to allot the budgets in future.

To understand and prediction of demand drivers by Brand and Model by keeping the Media spends in

Projection - Process

Consideration.

Use Case - Automotive Client

Let's look at how we applied these techniques to solve the business problem for one of our automotive client.

In order to see the impact of media spend , we thought of opting ARIMAX, as there are additional explanatory variables (multivariate) in numeric format. Also we chose ARIMA as my future values are dependent on my past three years of data.

Our Impact: With AI & Machine Learning We Can Now...

Use Case Walk through

Let's look at how we applied these techniques to solve the business problem for one of our automotive client.

Packages

Package Used

```
import statsmodels.api as sm
from statsmodels.tsa.stattools import adfuller
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
```

Use Case Walk through

Let's look at how we applied these techniques to solve the business problem for one of our automotive client.

RMSE/MAPE

$$MAPE = \frac{\sum \frac{|A-F|}{A} \times 100}{N} \qquad RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

RMSE/MAPE

rmse = round(np.sqrt(mean_squared_error(test_last60[var], pred_test_last60[0])), 0)
mape = round(mean_absolute_percentage_error(df_mape_inf[var], df_mape_inf['preds']), 2)
#else

Use Case Walk through

Let's look at how we applied these techniques to solve the business problem for one of our automotive client.

Setting pdq


```
plot_pacf(ts_visits_diff)
plt.savefig('visits_pacf_'+nameplate+'.png', bbox_inches='tight')
```

Use Case Walk through (Demo)

Let's look at how we applied these techniques to solve the business problem for one of our automotive client.

Forecasting Values

```
ar = ARIMA(endog=train_all_known[var], exog=train_all_known[exog_var], order=(p,d,q))
# fit ARIMA model
model = ar.fit()
# predict test using ARIMA model
pred_unknown = model.forecast(steps=len(test_all_unknown), exog=test_all_unknown[exog_var])
```

Let's <u>see</u> it action

Outputs - ARIMAX

Let's look at how we applied these techniques to solve the business problem for one of our automotive client.

RMSE /MAPE

Causal Impact

Causal Impact

In this section, we like to present the additional factors embedded with data

Another perspective of looking at forecasting can be also

Time series forecasting

- Moving average method
- Exponential smoothing method
- Trend projection methods

Causal methods

- Chain-ratio method
- Consumption level method
- End use method
- Leading indicator method

The problem of causal inference

Causal effect of advertising on clicks

Use Case Walk through - Causal Impact

Let's look at how we applied these techniques to solve the business problem for one of our automotive client.

Important Package

```
from causalimpact import CausalImpact
import matplotlib
```

Causal Impact

```
impact = CausalImpact(df1, pre_period, post_period)
```

```
print(impact.summary())
```

Actual Predicted 95% CI	Average 233427 125368 [78838, 171898]	Cumulative 5368826 2883474 [1813279, 3953669]
Absolute Effect	108058	2485351
95% CI	[154588, 61528]	[3555546, 1415156]
Relative Effect	86.2%	86.2%
95% CI	[123.3%, 49.1%]	[123.3%, 49.1%]
P-value Prob. of Causal Effect	0.0% 100.0%	

Let's <u>see</u> it action

Outputs - Causal

Let's look at how we applied these techniques to solve the business problem for one of our automotive client.

Budget Optimization

Budget Optimization and its impact for forecasting

Let's understand about budget optimization and how it influences forecasting in the context of the automotive client use case that we briefly discussed earlier

Addressing the Problem:

• We collated data from disparate sources to create a unified view to understand how spend was affecting the demand drivers.

Factors which can influence the forecasting.

Optimization

The process is to derive the best suited equation by using the influencing features/factors generated from the model

Budget Optimization and its impact for forecasting

Let's understand about budget optimization and how it influences forecasting in the context of the automotive client use case that we briefly discussed earlier

Optimization Equation

Optimising the overall budget and maximising the equation to get maximum LFAs with 99% utilisation of entire budget allocated to specific brand.

Optimization Equation Constraints

After setting up the equation , we had set some constraints as per the business requirement.

X = Total spend

Budget Optimization and its impact for forecasting

Let's understand about budget optimization and how it influences forecasting in the context of the automotive client use case that we briefly discussed earlier

Goal Setting - Result

Total Target: 800K, Total Campaigns: 350, No of Days = 31		Channel level Constraints Digital = <mark>450K</mark> , Search = <mark>350K</mark>			
Nameplate	LFAs	Budget	Nameplate	LFAs	Budget
Model A	20,175	5,06,515	Digital	445,605	7,831,590
Model B	2,668	42,564	Search	354,417	5,109,602
Model C	4,45,658	55,07,300	Total	8,00,022	1,29,41,193
Model D	98,601	19,41,071			
Model E	4,976	60,358			
Model DX	81,470	21,13,756			
Model CX	1,46,112	27,61,168			
Total	8.00.022	1.29.41.193			

Key Features

Intelligence @ Scale	Extensibility		Performance @ Scale
 Ability to maximize the LFAs with given budget in a single click by using Machine Learning Algorithms. 	Currently used for our automotive client but can be used for other clients to achieve targets and Budget		Reduced the processing time from 45 mins to under 3 mins thus enabling faster delivery and scalability across different brands
2. Ability to achieve the LFAs by Optimizing the budget along	Predict Targets		
with the business level constraints	Predict Targets with 80% accuracy.	 	

Optimization – Scipy Package

```
Obtaining Coefficients & Exponents - curve_fit
```

```
def fit_curve(x,y):
    '''
    power curve y = a*(x^b)
    '''
    popt, pcov = curve_fit(lambda fx,a,b: a*fx**b, x, y, maxfev = 10000)
    pred_y = popt[0]*x**popt[1]
    r2 = r2_score(y,pred_y)
    rmse = round(np.sqrt(mean_squared_error(y, pred_y)), 0)
    df_mape_inf = pd.DataFrame()
    df_mape_inf['y'] = y
    df_mape_inf['pred_y'] = pred_y
    df_mape_inf = df_mape_inf[df_mape_inf['y'] != 0]
    mape = round(mean_absolute_percentage_error(df_mape_inf['y'], df_mape_inf['pred_y']), 2)
```

https://www.dummies.com/education/math/business-statistics/how-to-calculate-the-adjusted-coefficient-of-determination/
#r2_adj = (1 - (1 - r2) * ((len(y) - 1)/(len(y) - (1 + 1)))

```
#confidence = np.sqrt(np.diag(pcov))
```

```
return([popt,[r2,mape,rmse],pred_y])
```

Optimization – Defining Objective function

Defining Objective function

```
#Defining the objective function(For Search and Digital Campaigns together)
def objective(x):
    eq=(((((((x[0]+spend_flr[0]+aar[0])**es[0])*cs[0])**ev[0])*cv[0])**el[0])*cl[0]
    eq2=0
    for i in range(1,len(cs)):
        if i<len(df_s):
            eq=eq+(((((x[i]+spend_flr[i]+aar[i])**es[i])*cs[i])**ev[i])*cv[i])**el[i])*cl[i] #For Search campaigns
        else:
            eq2=eq2+((((x[i]+spend_flr[i]+aar[i])**evs[i])*cvs[i])**el[i])*cl[i] #For Digital campaigns
    return -(eq+eq2)</pre>
```

Optimization

Defining Objective function

Available Methods

- SLSQP
- trust-ncg
- TNC
- COBYLA

Optimization

```
start_time_c = time.time()
#Optimize
solution = minimize(objective,x0,method='SLSQP',bounds=bnds,constraints=cons)
xc = solution.x
# show final objective
print('Final Objective: ' + str(objective(xc)))
# print solution
print('Solution')
# for i in range(0,len(x)):
#     print(str(x[i]))
end_time_c = time.time()
print("Total Time Taken: {0} seconds".format(end time c - start time c))
```

Discussion Time !!!

thank you

"You can reach us with details on the github page" <u>https://bit.ly/rising2020ps</u>

https://datacoe-publicissapient.github.io/risingai2020

copyright publicis sapient | confidential

publicis sapient